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Abstract

A postbuckling analysis is presented for a cross-ply laminated cylindrical shell with piezoelectric actuators subjected

to the combined action of external pressure and heating and under electric loading cases. The temperature rise con-

sidered is assumed to be a uniform distribution over the shell surface and through the shell thickness and the electric

field is assumed to be the transverse component EZ only. The material properties are assumed to be independent of the

temperature and the electric field. The governing equations are based on the classical shell theory with von K�aarm�aan–
Donnell type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of

the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear

prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is

extended to the case of hybrid laminated cylindrical shells. A singular perturbation technique is employed to determine

the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling

behavior of perfect and imperfect, cross-ply laminated cylindrical thin shells with fully covered or embedded piezo-

electric actuators subjected to combined action of external pressure and heating and under different sets of electric

loading cases. The effects played by applied voltage, shell geometric parameter, stacking sequence, as well as initial

geometric imperfections are studied.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Postbuckling; Hybrid laminated cylindrical shell; Thermo-piezoelectric effect; Boundary layer theory of shell buckling;
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1. Introduction

The circular cylindrical shell has been used extensively as a structural configuration, mainly in
the aerospace industry. One of the recent advances in material and structural engineering is in the field of
smart structures which incorporates adaptive materials. By taking advantage of the direct and converse
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piezoelectric effects, piezoelectric composite structures can combine the traditional performance advantages
of composite laminates along with the inherent capability of piezoelectric materials to adapt to their current
environment. Therefore, hybrid laminated structures where a substrate made laminated material is coupled
with surface bonded or embedded piezoelectric actuator and/or sensor layers are becoming increasingly
important.

Numerous studies on the modelling and analysis of hybrid laminated cylindrical shells have been per-
formed (see, for example Tzou and Gadre, 1989; Koconis et al., 1994; Birman and Simonyan, 1994; Tani
et al., 1995; Chen et al., 1996; Kapuria et al., 1997; Saravanos, 1997; Correia et al., 1999; Lee and Sarav-
anos, 2000; Balamurugan and Narayanan, 2001). These studies were focused on the cases of linear bending
analysis and/or vibration control for which there has been considerable interest in engineering (see Li et al.,
2001). Recently, Oh et al. (2000) gave a thermal postbuckling analysis of laminated plates with top and/or
bottom surface-bonded actuators subjected to thermal and electric loads. In their analysis nonlinear finite
element equations based on layerwise displacement theory were formulated, but their numerical results
were only for thin plates and all plates were assumed to have perfect initial configurations. Also recently,
Shen (2001) gave a postbuckling analysis of laminated plates with fully covered or embedded piezoelectric
actuators subjected to mechanical, thermal and electric loads. In the analysis the transverse shear defor-
mation and initial geometric imperfection of the plate are both accounted for. However, studies on post-
buckling of hybrid laminated cylindrical shells containing piezoelectric layers subjected to the combined
action of external pressure and heating and under electric loading cases have not been seen in the literature.

It has been shown in Shen and Chen (1988, 1990) that in shell buckling, there is a boundary layer
phenomenon where prebuckling and buckling displacement vary rapidly. They suggested a boundary layer
theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections
in the postbuckling range, and initial geometric imperfections of the shell. Based on this theory, post-
buckling analyses for perfect and imperfect, unstiffened and stiffened, isotropic and multilayered cylindrical
shells under various loading cases have been performed by Shen and Chen (1991), Shen et al. (1993), and
Shen (1997a–c, 1998a,b, 1999). The present paper extends the previous works to the case of cross-ply
laminated cylindrical shells with piezoelectric actuators subjected to the combined action of external
pressure and heating and under electric loading cases.

In the present study, the temperature rise considered is assumed to be a uniform distribution over the
shell surface and through the shell thickness. The electric field is assumed to be the transverse component EZ

only. Note that temperature can affect the properties of fiber-reinforced composites (see Tsai and Hahn,
1980). In addition, the properties of piezoelectric materials, including piezoelectric constants, vary with
temperature. The present analysis does not account for these effects, i.e. it is assumed that temperature
variations do not affect material properties. Also the material properties are assumed to be independent of
the electric field. The governing equations are based on the classical shell theory with von K�aarm�aan–Donnell
type of kinematic nonlinearity and including thermo-piezoelectric effects. A singular perturbation technique
is employed to determine the interactive buckling loads and postbuckling load–deflection curves. The
nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into
account but, for simplicity, the form of initial geometric imperfection is assumed to be the same as the
initial buckling mode of the shell. The numerical illustrations show the full nonlinear postbuckling response
of hybrid laminated cylindrical shells containing piezoelectric layers under combined loading conditions.

2. Theoretical development

Consider a circular cylindrical shell with mean radius R, length L, and thickness t, which consists of N
plies. Some of the plies can be piezoelectric (see Fig. 1). The shell is referred to a coordinate system ðX ; Y ; ZÞ
in which X and Y are in the axial and circumferential directions of the shell and Z is in the direction of the
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inward normal to the middle surface, the corresponding displacement designated by U , V , and W . The
origin of the coordinate system is located at the end of the shell on the middle plane. The shell is assumed to
be relatively thin and geometrically imperfect, and is subjected to two loads of external pressure q and a
uniform temperature rise T0 and under electric loading cases. Denoting the initial geometric imperfection by
W

�ðX ; Y Þ, let W ðX ; Y Þ be the additional deflection and F ðX ; Y Þ be the stress function for the stress resul-
tants defined by Nx ¼ F ;yy , Ny ¼ F ;xx, and Nxy ¼ �F ;xy , where a comma denotes partial differentiation with
respect to the corresponding coordinates.

It is mentioned that some of the basic equations from Shen (1998b) are repeated here for clarity, with the
small changes included that are needed to make them applicable to laminated cylindrical shells with
piezoelectric actuators.

Based on classical shell theory (i.e. transverse shear deformation effects are neglected) with von K�aarm�aan–
Donnell type kinematic relations and including thermo-piezoelectric effects, the governing differential
equations for a cross-ply laminated cylindrical shell with fully covered or embedded piezoelectric actuators
can be derived in terms of a stress function F , and a transverse displacement W , along with the initial
geometric imperfection W

�
. They are

eLL11ðW Þ þ eLL12ðF Þ � eLL13ðN
PÞ � eLL14ðM

PÞ � 1

R
F ;xx ¼ eLLðW þ W

�
; F Þ þ q; ð1Þ

eLL21ðF Þ � eLL22ðW Þ � eLL23ðN
PÞ þ 1

R
W ;xx ¼ � 1

2
eLLðW þ 2W

�
;W Þ; ð2Þ

where the operators

eLL13ðN
PÞ ¼ o2

oX 2
ðB�

11N
P

x þ B�
21N

P

y Þ þ 2
o2

oXoY
ðB�

66N
P

xyÞ þ
o2

oY 2
ðB�

12N
P

x þ B�
22N

P

y Þ;

eLL14ðM
PÞ ¼ o2

oX 2
ðMP

x Þ þ 2
o2

oXoY
ðMP

xyÞ þ
o2

oY 2
ðMP

y Þ;

eLL23ðN
PÞ ¼ o2

oX 2
ðA�

12N
P

x þ A�
22N

P

y Þ �
o2

oXoY
ðA�

66N
P

xyÞ þ
o2

oY 2
ðA�

11N
P

x þ A�
12N

P

y Þ

ð3Þ

and all other operators are defined as in Shen (1998b).
In Eq. (3), [A�

ij], [B�
ij] and [D�

ij] ði; j ¼ 1; 2; 6Þ are reduced stiffness matrices, defined as A� ¼ A�1,
B� ¼ �A�1B and D� ¼ D� BA�1B, where A, B and D are defined in the standard way.

Fig. 1. A hybrid laminated cylindrical shell with piezoelectric layers.
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The equivalent thermo-piezoelectric loads are defined as

N
P

M
P

� �
¼ N

T

M
T

� �
þ N

E

M
E

� �
: ð4Þ

The temperature rise is assumed to be a uniform distribution over the shell surface and through the shell
thickness, i.e. T ðX ; Y ; ZÞ ¼ T0.

For the panel type piezoelectric material, only thickness direction electric field EZ is dominant, and EZ is
defined as EZ ¼ �U;Z , where U is the potential field. If the voltage applied to the actuator in the thickness
only, then

EZ ¼ Vk

tk
; ð5Þ

where Vk is the applied voltage across the kth ply and tk is the thickness of the ply.
The forces and moments caused by elevated temperature or electric field are defined by (see Reddy, 1999)

N
T

x M
T

x

N
T

y M
T

y

N
T

xy M
T

xy

2664
3775 ¼

XN
k¼1

Z tk

tk�1

ð1; ZÞ
Ax

Ay

Axy

264
375

k

T0 dZ ð6aÞ

and

N
E

x M
E

x

N
E

y M
E

y

N
E

xy M
E
xy

2664
3775 ¼

XN
k¼1

Z tk

tk�1

ð1; ZÞ
Bx

By

Bxy

264
375

k

Vk

tk
dZ ð6bÞ

in which

Ax

Ay

Axy

24 35 ¼ �
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

24 35 c2 s2

s2 c2

2cs �2cs

24 35 a11

a22

� �
; ð7aÞ

Bx

By

Bxy

24 35 ¼ �
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

24 35 c2 s2

s2 c2

2cs �2cs

24 35 d31
d32

� �
; ð7bÞ

where a11 and a22 are the thermal expansion coefficients measured in the fiber and transverse directions,
respectively, d31 and d32 are piezoelectric strain constants of a single ply, and Qij are the transformed elastic
constants, details of which can be found in Shen (1997c), and c ¼ cos h, s ¼ sin h, where h is the lamination
angle with respect to the shell X-axis.

The two end edges of the shell are assumed to be simply supported or clamped, and restrained against
expansion longitudinally while the temperature is increased steadily, so that the boundary conditions are

X ¼ 0, L:

W ¼ 0; ð8aÞ

U ¼ 0; ð8bÞ

Mx ¼ �B�
21

o2F
oX 2

� B�
11

o2F
oY 2

� D�
11

o2W
oX 2

� D�
12

o2W
oY 2

þM
P

x ¼ 0 ðsimply supportedÞ; ð8cÞ
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W ;x ¼ 0 ðclampedÞ; ð8dÞ
where Mx is the bending moment. Also, we have the closed (or periodicity) conditionZ 2pR

0

oV
oY

dY ¼ 0 ð9aÞ

or Z 2pR

0

A�
22

o2F
oX 2

"
þ A�

12

o2F
oY 2

� B�
21

o2W
oX 2



þ B�

22

o2W
oY 2

�
þ W

R
� 1

2

oW
oY


 �2

� oW
oY

oW
�

oY
� A�

12N
P

x

�
þ A�

22N
P

y

�#
dY ¼ 0:

ð9bÞ

Because of Eqs. (9a) and (9b), the in-plane boundary condition V ¼ 0 (at X ¼ 0, L) is not needed in Eqs.
(8a)–(8d).

The average end-shortening relationship is defined as

Dx

L
¼ � 1

2pRL

Z 2pR

0

Z L

0

oU
oX

dX dY

¼ � 1

2pRL

Z 2pR

0

Z L

0

A�
11

o2F
oY 2

"
þ A�

12

o2F
oX 2

� B�
11

o2W
oX 2



þ B�

12

o2W
oY 2

�
� 1

2

oW
oX


 �2

� oW
oX

oW
�

oX

� A�
11N

P

x

�
þ A�

12N
P

y

�#
dX dY : ð10Þ

It is noted that the thermo-piezoelectric forces N
P

x and N
P

y , and moment M
P

x are now included in Eqs.
(8c), (9b) and (10).

3. Analytical method and asymptotic solutions

Having developed the theory, we will try to solve Eqs. (1) and (2) with boundary condition (8a)–(8d).
Before proceeding, it is convenient first to define the following dimensionless quantities:

x ¼ pX=L; y ¼ Y =R; b ¼ L=pR; Z ¼ L2=Rt; e ¼ ðp2R=L2Þ½D�
11D

�
22A

�
11A

�
22�

1=4;

ðW ;W �Þ ¼ eðW ;W
�Þ=½D�

11D
�
22A

�
11A

�
22�

1=4; F ¼ e2F =½D�
11D

�
22�

1=2;

c12 ¼ ðD�
12 þ 2D�

66Þ=D�
11; c22 ¼ ðA�

12 þ 1
2
A�
66Þ=A�

22;

c14 ¼ ½D�
22=D

�
11�

1=2; c24 ¼ ½A�
11=A

�
22�

1=2; c5 ¼ �A�
12=A

�
22;

ðc30; c32; c34; c311; c322Þ ¼ ðB�
21;B

�
11 þ B�

22 � 2B�
66;B

�
12;B

�
11;B

�
22Þ=½D�

11D
�
22A

�
11A

�
22�

1=4;

ðcT1; cT2; cP1; cP2Þ ¼ ðAT
x =a0;AT

y =a0;BP
x ;B

P
y ÞR½A�

11A
�
22=D

�
11D

�
22�

1=4;

ðMx;MP
x Þ ¼ e2ðMx;M

P

x ÞðL2=p2Þ=D�
11½D�

11D
�
22A

�
11A

�
22�

1=4;

kT ¼ a0T0; kq ¼ qð3Þ3=4LR3=2½A�
11A

�
22�

1=8=4p½D�
11D

�
22�

3=8;

dT ¼ ðDx=LÞ=ð2=RÞ½D�
11D

�
22A

�
11A

�
22�

1=4; dq ¼ ðDx=LÞð3Þ3=4LR1=2=4p½D�
11D

�
22A

�
11A

�
22�

3=8;

ð11Þ

where a0 is an arbitrary reference value, and

a11 ¼ a11a0; a22 ¼ a22a0: ð12Þ
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Also let

AT
x

AT
y

� �
¼ �

XN
k¼1

Z tk

tk�1

Ax

Ay

� �
k

dZ; ð13aÞ

BP
x

BP
y

� �
DV ¼ �

XN

k¼1

Z tk

tk�1

Bx

By

� �
k

Vk

tk
dZ: ð13bÞ

The nonlinear Eqs. (1) and (2) may then be written in dimensionless form as

e2L11ðW Þ þ ec14L12ðF Þ � c14F ;xx ¼ c14b
2LðW þ W �; F Þ þ c14

4
3
ð3Þ1=4kqe

3=2; ð14Þ

L21ðF Þ � ec24L22ðW Þ þ c24W ;xx ¼ �1
2
c24b

2LðW þ 2W �;W Þ; ð15Þ

where the operators can also be found in Shen (1998b).
Because of the definition of e given in Eq. (11), for most of the composite materials ½D�

11D
�
22A

�
11A

�
22�

1=4 ¼
ð0:2� 0:3Þt, hence when Z ¼ ðL2=RtÞ > 2:96, we have e < 1. In particular, for isotropic cylindrical shells, we
have e ¼ p2=ZB

ffiffiffiffiffi
12

p
, where ZB ¼ ðL2=RtÞ½1� m2�1=2 is the Batdorf shell parameter, which should be greater

than 2.85 in the case of classical linear buckling analysis (see Batdorf, 1947). In practice, the shell structure
will have Z P 10, so that we always have e 
 1. When e < 1, Eqs. (14) and (15) are equations of the
boundary layer type, from which nonlinear prebuckling deformations, large deflections in the postbuckling
range, and initial geometric imperfections of the shell can be considered simultaneously.

The boundary conditions expressed by Eqs. (8a)–(8d) become

x ¼ 0, p:

W ¼ 0; ð16aÞ

dq ðor dT Þ ¼ 0; ð16bÞ

Mx ¼ 0 ðsimply supportedÞ; ð16cÞ

W ;x ¼ 0 ðclampedÞ ð16dÞ

and the closed condition becomesZ 2p

0

o2F
ox2


"
� c5b

2 o
2F
oy2

�
� ec24 c30

o2W
ox2



þ c322b

2 o
2W
oy2

�
þ c24W � 1

2
c24b

2 oW
oy


 �2

� c24b
2 oW
oy

oW �

oy
þ eðcT2 � c5cT1ÞkT þ eðcp2 � c5cp1ÞDV

#
dy ¼ 0: ð17Þ

In this section two combined loading conditions will be considered, so that the unit end-shortening
relationship may be written in two dimensionless forms as

dq ¼ � ð3Þ3=4

8p2c24
e�3=2

Z 2p

0

Z p

0

c224b
2 o

2F
oy2


"
� c5

o2F
ox2

�
� ec24 c311

o2W
ox2



þ c34b

2 o
2W
oy2

�

� 1

2
c24

oW
ox


 �2

� c24
oW
ox

oW �

ox
þ eðc224cT1 � c5cT2ÞkT þ eðc224cP1 � c5cP2ÞDV

#
dxdy; ð18aÞ
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dT ¼ � 1

4p2c24
e�1

Z 2p

0

Z p

0

c224b
2 o

2F
oy2


"
� c5

o2F
ox2

�
� ec24 c311

o2W
ox2



þ c34b

2 o
2W
oy2

�

� 1

2
c24

oW
ox


 �2

� c24
oW
ox

oW �

ox
þ eðc224cT1 � c5cT2ÞkT þ eðc224cP1 � c5cP2ÞDV

#
dxdy: ð18bÞ

By virtue of the fact that DV and T0 are assumed to be uniform, the thermo-piezoelectric coupling in Eqs.
(1) and (2) vanishes, but terms in DV and kT intervene in Eqs. (17)–(18b).

Applying Eqs. (14)–(18b), the postbuckling behavior of perfect and imperfect, cross-ply laminated cy-
lindrical shells with piezoelectric actuators under combined loading conditions is determined by a singular
perturbation technique. The essence of this procedure, in the present case, is to assume that

W ¼ wðx; y; eÞ þ eWW ðx; n; y; eÞ þ bWW ðx; 1; y; eÞ;
F ¼ f ðx; y; eÞ þ eFF ðx; n; y; eÞ þ bFF ðx; 1; y; eÞ; ð19Þ

where e is a small perturbation parameter (see beneath Eq. (15)) and wðx; y; eÞ, f ðx; y; eÞ are called outer
solutions or regular solutions of the shell, eWW ðx; n; y; eÞ, eFF ðx; n; y; eÞ and bWW ðx; 1; y; eÞ, bFF ðx; 1; y; eÞ are the
boundary layer solutions near the x ¼ 0 and x ¼ p edges, respectively, and n and f are the boundary layer
variables, defined as

n ¼ x=
ffiffi
e

p
; 1 ¼ ðp � xÞ=

ffiffi
e

p
: ð20Þ

(This means for isotropic cylindrical shells that the width of the boundary layers is of order
ffiffiffiffiffi
Rt

p
.) In Eq.

(19) the regular and boundary layer solutions are taken in the forms of perturbation expansions as

wðx; y; eÞ ¼
X
j¼1

ej=2wj=2ðx; yÞ; f ðx; y; eÞ ¼
X
j¼0

ej=2fj=2ðx; yÞ; ð21aÞ

eWW ðx; n; y; eÞ ¼
X
j¼0

ej=2þ1 eWWj=2þ1ðx; n; yÞ; eFF ðx; n; y; eÞ ¼ X
j¼0

ej=2þ2eFFj=2þ2ðx; n; yÞ; ð21bÞ

bWW ðx; 1; y; eÞ ¼
X
j¼0

ej=2þ1 bWWj=2þ1ðx; 1; yÞ; bFF ðx; 1; y; eÞ ¼ X
j¼0

ej=2þ2bFFj=2þ2ðx; 1; yÞ: ð21cÞ

The initial buckling mode is assumed to have the form

w2ðx; yÞ ¼ Að2Þ
11 sinmx sin ny ð22Þ

and the initial geometric imperfection is assumed to have the similar form

W �ðx; y; eÞ ¼ e2a�11 sinmx sin ny ¼ e2lAð2Þ
11 sinmx sin ny; ð23Þ

where l ¼ a�11=A
ð2Þ
11 is the imperfection parameter.

Substituting Eqs. (19)–(21c) into Eqs. (14) and (15), and collecting terms of the same order of e, three sets
of perturbation equations are obtained for the regular and boundary layer solutions, respectively. It has
been shown (Shen and Chen, 1988; Shen, 1997b) that the effect of the boundary layer on the buckling load
of the shell under thermal loading is quite different from that of the shell subjected to external pressure. To
this end, two kinds of combined loading conditions will be considered.

Case (1): High values of external pressure combined with relatively low thermal load. Let

2kCe
4
3
ð3Þ1=4kqe3=2

¼ b1
2
; ð24Þ
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where kC ¼ rxðRt=2Þ ½A�
11A

�
22=D

�
11D

�
22�

1=4
, rx is the average axial compressive stress caused by temperature rise

T0, so that kC ¼ ðc224cT1 � c5cT2ÞkT=2c224. (This means for isotropic cylindrical shells rx ¼ EaT0, and it is a
well-known result.)

By taking a1 ¼ aþ b1, where a ¼ 2c5=c
2
24, and by using Eqs. (22) and (23) to solve these perturbation

equations of each order, and matching the regular solutions with the boundary layer solutions at each end
of the shell, so that the asymptotic solutions satisfying the clamped boundary conditions are constructed as

W ¼ e3=2 Að3=2Þ
00

�
� Að3=2Þ

00 cos/
xffiffi
e

p



þ a
/

sin/
xffiffi
e

p
�
exp



� a

xffiffi
e

p
�

� Að3=2Þ
00 cos/

p � xffiffi
e

p



þ a
/

sin/
p � xffiffi

e
p

�
exp



� a

p � xffiffi
e

p
��

þ e2½Að2Þ
11 sinmx sin ny�

þ e3½Að3Þ
11 sinmx sin ny� þ e4½Að4Þ

00 þ Að4Þ
20 sin 2mxþ Að4Þ

02 cos 2ny� þOðe5Þ; ð25Þ

F ¼ � 1

2
Bð0Þ
00 b2x2



þ a1
y2

2

�
þ e

�
� 1

2
Bð1Þ
00 b2x2



þ a1
y2

2

��
þ e2

�
� 1

2
Bð2Þ
00 b2x2



þ a1
y2

2

�
þ Bð2Þ

11 sinmx sin ny
�
þ e5=2 Að3=2Þ

00 c24
1

b



�
þ c30

�
cos/

xffiffi
e

p � c24
1

b



� c30

�
a
/

sin/
xffiffi
e

p
�

� exp



� a

xffiffi
e

p
�
þ Að3=2Þ

00 c24
1

b




þ c30

�
cos/

p � xffiffi
e

p � c24
1

b



� c30

�
a
/

sin/
p � xffiffi

e
p

�
� exp



� a

p � xffiffi
e

p
��

þ e3
�
� 1

2
Bð3Þ
00 b2x2



þ a1
y2

2

��
þ e4

�
� 1

2
Bð4Þ
00 b2x2



þ a1
y2

2

�
þ Bð4Þ

11 sinmx sin ny þ Bð4Þ
20 cos 2mxþ Bð4Þ

02 cos 2ny
�
þOðe5Þ: ð26Þ

Note that all coefficients in Eqs. (25) and (26) are related and can be written as functions of Að2Þ
11 , but for the

sake of brevity the detailed expressions are not shown, whereas a and / are given in detail in Appendix A.
Next, upon substitution of Eqs. (25) and (26) into the boundary condition dq ¼ 0, the postbuckling

equilibrium path can be written as

kq ¼
1

4
ð3Þ3=4e�3=2½kð0Þ

q þ kð2Þ
q ðAð2Þ

11 e2Þ2 þ � � ��: ð27Þ

In Eq. (27), (Að2Þ
11 e2) is taken as the second perturbation parameter relating to the dimensionless maximum

deflection. If the maximum deflection is assumed to be at the point ðx; yÞ ¼ ðp=2m; p=2nÞ, from Eq. (25) one
has

Að2Þ
11 e2 ¼ Wm � H1W 2

m þ � � � ; ð28aÞ
where Wm is the dimensionless form of maximum deflection of the shell that can be written as

Wm ¼ 1

C3

e
t

½D�
11D

�
22A

�
11A

�
22�

1=4

W
t

"
þ H2

#
: ð28bÞ

All symbols used in Eqs. (27)–(28b) and Eqs. (32)–(33b) below are also described in detail in Appendix
A.

Case (2): High values of temperature rise combined with relatively low external pressure. Let

4
3
ð3Þ1=4kqe3=2

2kCe
¼ 2b2: ð29Þ
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Similarly, by taking a2 ¼ 2b2 and using a singular perturbation procedure, the asymptotic solutions sat-
isfying the clamped boundary conditions are obtained as
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Next, upon substitution of Eqs. (30) and (31) into the boundary condition dT ¼ 0, the thermal post-
buckling equilibrium path can be written as

kT ¼ kð0Þ
T � kðPÞ

T � kð2Þ
T ðAð2Þ

11 eÞ2 þ kð4Þ
T ðAð2Þ

11 eÞ4 þ � � � ð32Þ
In Eq. (32), similarly, (Að2Þ

11 e) is taken as the second perturbation parameter in this case, and we have

Að2Þ
11 e ¼ Wm � H3W 2

m þ � � � ð33aÞ
and the dimensionless maximum deflection of the shell is written as

Wm ¼ 1

C3

t

½D�
11D

�
22A

�
11A

�
22�

1=4

W
t

"
þ H4

#
: ð33bÞ

Eqs. (27)–(28b) and (32)–(33b) can be employed to obtain numerical results for full nonlinear post-
buckling load–deflection curves of cross-ply laminated cylindrical shells with piezoelectric actuators sub-
jected to combined action of external pressure and heating and under electric loading cases. Buckling under
a uniform lateral pressure and thermal buckling under a uniform temperature rise follow as two limiting
cases. By increasing b1 and b2, respectively, the interaction curve of a hybrid laminated cylindrical
shell under combined loading can be constructed with these two lines. Note that since b2 ¼ 1=b1, only one
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load-proportional parameter should be determined in advance. The initial buckling load of a perfect shell
can readily be obtained numerically, by setting W

�
=t ¼ 0 (or l ¼ 0), while taking W =t ¼ 0 (note that

Wm 6¼ 0). In this case, the minimum buckling load is determined by considering Eq. (27) or (32) for various
values of the buckling mode ðm; nÞ that determine the number of half-waves in the X-direction and of full
waves in the Y-direction. Note that because of Eqs. (25) and (30), the prebuckling deformation of the shell
is nonlinear.

4. Numerical results and comments

Numerical results are presented in this section for perfect and imperfect, cross-ply laminated cylindrical
shells with symmetrically fully covered or embedded piezoelectric layers, where the outmost layer is the first
mentioned orientation. Graphite/epoxy composite material and PZT-5A were selected for the substrate
orthotropic layers and piezoelectric layers, respectively. The material properties of the graphite/epoxy and
piezoelectric layers are given in Table 1. However, the analysis is equally applicable to other types of
composite materials. For these examples, the total thickness of the shell t ¼ 1:2 mm whereas the thickness
of piezoelectric layers is 0.1 mm, and all other orthotropic layers are of equal thickness.

The accuracy and effectiveness of the present method for the buckling and postbuckling analysis of
isotropic or multilayered cylindrical shells subjected to external pressure or thermal loading were examined
by many comparison studies given in Shen and Chen (1991), Shen et al. (1993), and Shen (1998a,b).

A parametric study has been carried out and typical results are shown in Tables 2 and 3, and Figs. 2–8. It
should be appreciated that in all of these figures W

�
=t denotes the dimensionless maximum initial geometric

imperfection of the shell.
Table 2 gives buckling loads Tcr, (�C) and qcr (kPa) for (0/90)2S symmetric cross-ply and (0/90)4T anti-

symmetric cross-ply laminated cylindrical shells with symmetrically fully covered or embedded piezoelectric
layers, referred to as (P/(0/90)2)S, (0/P/90/0/90)S, (P/(0/90)4/P)T and (0/P/(90/0)3/P/90)T, respectively, under
four sets of combined loading conditions, i.e. lateral pressure alone (b1 ¼ 0), combined loading case (1)
(b1 ¼ 10), combined loading case (2) (b2 ¼ 0:01 or 0.02) and heating alone (b2 ¼ 0). The control voltage
with the same sign is also applied to both upper and lower piezoelectric layer, referred to as VU and VL.
Three electric loading cases are considered. Here, VU ¼ VL ¼ 0 V means the buckling under a grounding
condition. It can be seen that the control voltage has a significant effect on the buckling loads under
combined loading case (2), but has a very small effect on the buckling loads under combined loading case
(1).

Fig. 2 gives the thermal postbuckling load–deflection curves for a (P/(0/90)2)S cylindrical shell under
combined loading case (2) with the load-proportional parameter b2 ¼ 0 and 0.02, and under three sets of

Table 1

Material properties of the graphite/epoxy and PZT-5A layers used in the present study

Properties Graphite/epoxy PZT-5A layer

E11 (GPa) 150 63

E22 (GPa) 9 63

G12 (GPa) 7.1 24.2

m12 0.3 0.3

a11 (10�6 �C�1) 1.1 0.9

a22 (10�6 �C�1) 25.2 0.9

d31 (10�12 m/V) 0 254

d32 (10�12 m/V) 0 254
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electric loading cases. It can be seen that the minus control voltages VU ¼ VL ¼ �100 V make the shell panel
contract so that the buckling temperature is increased and the postbuckled deflection is decreased at the
same temperature rise. In contrast, the plus control voltages VU ¼ VL ¼ þ100 V decrease the buckling
temperature and induce more large postbuckled deflections. The buckling temperature and postbuckling
thermal loads are decreased by increasing the load-proportional parameter b2. It can also be seen that only
a very weak ‘‘snap-through’’ phenomenon occurs in the postbuckling range and the imperfection sensitivity
can be predicted only for very small geometric imperfections.

Table 2

Comparisons of buckling loads Tcr (�C) and qcr (kPa) for perfect piezolaminated cylindrical shells (R=t ¼ 300) subjected to combined

heating and lateral pressure and under three sets of electric loading cases

Lay-up Loading casea VU ¼ VL ¼ �100 V VU ¼ VL ¼ 0 V VU ¼ VL ¼ þ100 V

Tcr qcr Tcr qcr Tcr qcr

Z ¼ 200

(P/(0/90)2)S I 428.7977 0 409.5240 0 390.2303 0

II 407.0167 10.4302 387.8940 9.9402 368.7485 9.4496

III 260.5236 26.4819 260.5496 26.4652 206.5784 26.4689

IV 0 40.9340 0 40.9337 0 40.9334

(0/P/90/0/90)S I 406.8270 0 387.5548 0 368.2604 0

II 395.5050 5.0676 376.3122 4.8217 357.0951 4.5755

III 183.0540 23.4536 183.0664 23.4563 183.0904 23.4594

IV 0 35.5569 0 35.5566 0 35.5564

(P/(0/90)4/P)T I 428.2886 0 408.9482 0 389.6208 0

II 415.0231 10.6354 395.9119 10.1456 376.7783 9.6553

III 232.3520 29.7713 232.3841 29.7754 232.4193 29.7799

IV 0 47.1077 0 47.1073 0 47.1070

(0/P/(90/0)3/P/90)T I 412.6404 0 393.3018 0 373.9675 0

II 400.0673 10.6079 380.8411 9.7594 361.6068 9.2665

III 229.7813 29.4419 229.8132 29.4460 229.8482 29.4504

IV 0 46.5861 0 46.5857 0 46.5854

Z ¼ 500

(P/(0/90)2)S I 429.3031 0 409.9954 0 390.6703 0

II 419.1593 5.3707 399.9236 5.1242 380.4678 4.8775

III 154.8400 19.8397 154.8440 19.8402 154.8486 19.8408

IV 0 26.14704 0 26.14698 0 26.14695

(0/P/90/0/90)S I 408.6986 0 389.3907 0 370.0630 0

II 395.5372 5.0680 376.4170 4.8230 357.2700 4.5777

III 136.2763 17.4611 136.2796 17.4615 136.2833 17.4620

IV 0 22.71970 0 22.71965 0 22.71962

(P/(0/90)4/P)T I 429.1577 0 409.8042 0 390.4507 0

II 415.0191 10.6353 395.8705 10.1446 376.7004 9.6557

III 177.2671 22.7132 177.2722 22.7139 177.2779 22.7146

IV 0 30.37182 0 30.37175 0 30.37170

(0/P/(90/0)3/P/90)T I 413.7106 0 394.3670 0 375.0172 0

II 399.8684 10.2470 380.6515 9.7546 361.4200 9.2618

III 176.5277 22.6185 176.5328 22.6192 176.5385 22.6199

IV 0 30.24882 0 30.24874 0 30.24869

a I: pure thermal loading (b2 ¼ 0), II: combined loading case (2) (b2 ¼ 0:01 or 0.02), III: combined loading case (1) (b1 ¼ 10), IV:

pure lateral pressure (b1 ¼ 0).
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Fig. 3 gives the thermal postbuckling load–deflection curves for a (P/(0/90)4/P)T cylindrical shell under the
same loading case of Fig. 1. Changes in buckling mode are clearly observed by increasing the load-pro-
portional parameter b2, i.e. ðm; nÞ ¼ ð4; 14Þ become ðm; nÞ ¼ ð3; 14Þ, and the postbuckling load–deflection
curves become sufficiently lower. It can also be seen that, under the loading case of heating alone ðb2 ¼ 0Þ,
the thermal postbuckling behavior is stable and the shell structure becomes imperfection insensitive.

Fig. 4 compares the thermal postbuckling load–deflection curves for (0/P/90/0/90)S and (0/P/(90/0)3/P/
90)T cylindrical shells under combined loading case (2) with the load-proportional parameter b2 ¼ 0:01, and
under three sets of electric loading cases. The results show that the thermal postbuckling load–deflection

Table 3

Imperfection sensitivity k� for imperfect piezolaminated cylindrical shells subjected to combined heating and lateral pressure and under

three sets of electric loading cases (R=t ¼ 300, Z ¼ 200)

Lay-up VU ¼ VL ¼ W
�
=t ¼ 0:0 W

�
=t ¼ 0:2 W

�
=t ¼ 0:3 W

�
=t ¼ 0:4 W

�
=t ¼ 0:5

b2 ¼ 0:0
(P/(0/90)2)S �100 V 1.0 0.9399 0.9160 0.8960 0.8791

0 V 1.0 0.9392 0.9142 0.8933 0.8757

þ100 V 1.0 0.9386 0.9123 0.8904 0.8719

(0/P/90/0/90)S �100 V 1.0 0.9368 0.9121 0.8914 0.8738

0 V 1.0 0.9360 0.9100 0.8883 0.8698

þ100 V 1.0 0.9351 0.9078 0.8850 0.8655

b2 ¼ 0:01

(P/(0/90)2)S �100 V 1.0 0.9384 0.9148 0.8949 0.8778

0 V 1.0 0.9375 0.9130 0.8919 0.8740

þ100 V 1.0 0.9364 0.9104 0.8885 0.8696

(0/P/90/0/90)S �100 V 1.0 0.9353 0.9108 0.8901 0.8723

0 V 1.0 0.9340 0.9082 0.8865 0.8679

þ100 V 1.0 0.9325 0.9054 0.8825 0.8628

Fig. 2. Thermal postbuckling load–deflection curves of a (P/(0/90)2)S cylindrical shell subjected to combined heating and lateral

pressure and under electric loading cases.
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curves of (0/90)2S cylindrical shell is lower than that of (0/90)4T cylindrical shell with symmetrically em-
bedded piezoelectric layers, when W =t > 0:5.

Fig. 5 compares the thermal postbuckling load–deflection curves for (P/(0/90)4/P)T and (0/P/(90/0)3/P/
90)T cylindrical shells under the same loading case of Fig. 3. The results show that the shell with embedded
piezoelectric layers has lower buckling temperature, but has higher postbuckling strength when the de-
flection W is sufficiently large.

Fig. 6 shows the effect of shell geometric parameter Z (¼200 and 500) on the thermal postbuckling
behavior of (P/(0/90)2)S cylindrical shells under combined loading case (2) with the load-proportional
parameter b2 ¼ 0:01, and under three sets of electric loading cases. The results show that the buckling

Fig. 3. Thermal postbuckling load–deflection curves of a (P/(0/90)4/P)T cylindrical shell subjected to combined heating and lateral

pressure and under electric loading cases.

Fig. 4. Comparisons of thermal postbuckling load–deflection curves of (0/P/90/0/90)S and (0/P/(90/0)3/P/90)T cylindrical shells sub-

jected to combined heating and lateral pressure and under electric loading cases.
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temperatures compare very closely for these two shells. In contrast, the thermal postbuckling load–de-
flection curve of the shell with Z ¼ 200 is lower than that of the shell with Z ¼ 500, when W =t > 0:5.

The effects of control voltages on the imperfection sensitivities of (0/90)2S laminated cylindrical shell with
symmetrically fully covered or embedded piezoelectric layers under combined loading case (2) with the
load-proportional parameter b2 ¼ 0 and 0.01 are shown in Table 3, and only a very small effect can be seen.
In Table 3, k� is the maximum value of rx for the imperfect shell, made dimensionless by dividing by the
critical value of rx for the perfect shell.

Figs. 7 and 8 show, respectively, the effects of control voltages on the postbuckling behavior of the same
two cylindrical shells analogous to the cases of Figs. 2 and 3, but under combined loading case (1) with the

Fig. 5. Comparisons of thermal postbuckling load–deflection curves of (P/(0/90)4/P)T and (0/P/(90/0)3/P/90)T cylindrical shells subjected

to combined heating and lateral pressure and under electric loading cases.

Fig. 6. Effect of shell geometric parameter on the thermal postbuckling load–deflection curves of (P/(0/90)2)S cylindrical shells subjected

to combined heating and lateral pressure and under electric loading cases.
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load-proportional parameter b1 ¼ 0 and 5.0. The results show that the curves 1, 2 and 3 are almost the
same, and the control voltage has a very small effect on the postbuckling behavior. It can also be seen that
an increase in pressure is usually required to obtain an increase in deformation, and the postbuckling path
is stable for both perfect and imperfect shells, and the shell structure is virtually imperfection insensitive.

5. Concluding remarks

A postbuckling analysis has been presented for cross-ply laminated cylindrical shells with piezoelectric
actuators subjected to combined action of external pressure and heating and under electric loading cases.

Fig. 7. Postbuckling load–deflection curves of a (P/(0/90)2)S cylindrical shell subjected to combined lateral pressure and heating and

under electric loading cases.

Fig. 8. Postbuckling load–deflection curves of a (P/(0/90)4/P)T cylindrical shell subjected to combined lateral pressure and heating and

under electric loading cases.
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The temperature field considered is assumed to be a uniform distribution over the shell surface and through
the shell thickness and the electric field is assumed to be the transverse component EZ only. The material
properties are assumed to be independent of the temperature and the electric field. The boundary layer
theory of shell buckling has been extended to the case of hybrid cylindrical shells containing piezoelectric
layers. A singular perturbation technique is employed to determine interactive buckling loads and post-
buckling load–deflection curves. Extensive parametric studies for symmetric and antisymmetric cross-ply
laminated shells with fully covered or embedded piezoelectric actuators have been carried out. The results
presented herein show that the minus control voltages increase the buckling temperature and decrease the
postbuckled deflection at the same temperature rise, whereas the plus control voltages decrease the buckling
temperature and induce more large postbuckled deflections. They also show that the control voltage has a
significant effect on the buckling loads under combined loading case (2). In contrast, it has a very small
effect on the imperfection sensitivities of (0/90)2S laminated cylindrical shells with piezoelectric actuators.
The results also confirm that the control voltage has a very small effect on the buckling loads under
combined loading case (1), and the postbuckling behavior of piezolaminated cylindrical shells is stable and
the shell structure is virtually imperfection insensitive.
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Appendix A

In Eqs. (27)–(28b)
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and in Eqs. (32)–(33b)
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g2

ð4þ l þ 2l2 þ l3Þ
ð1þ lÞ2

#
e

� c24
2g8

m2 1


�
þ 2l þ 1

pa
e1=2

�
e � 2g3e2 þ

g2
3

m2
e3
��

;

kð4Þ
T ¼ 1

64
C2

c224
c14c24 þ c234


 �2
c24m

10ð1þ lÞ
g3
2

e�1

� g13½C9ð1þ 3l þ l2Þ þ C5ð4þ 2lÞ þ ð1þ lÞ� þ g2½C5ð6þ 8l þ 2l2Þ � ð2l þ 3l2 þ l3Þ�
g13C9 � g2ð1þ lÞ

þ 1

64
C2

c24
g8

b
32pa

c224
c14c24 þ c234


 �2 m8ð1þ lÞ2

n4b4g2
2

e�3=2

(

þ m2n4b4ð1þ lÞ2e3 g2ð1þ 2lÞ þ 8m4ð1þ lÞ
g2ð1þ lÞ � 4m4C2

� �2)
;

C2 ¼
m2

m2 þ a2n2b
2
; C5 ¼

m2 þ 5a2n2b
2

m2 þ a2n2b
2
; C9 ¼

m2 þ 9a2n2b
2

m2 þ a2n2b
2
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in the above equations

g1 ¼ m4 þ 2c12m
2n2b2 þ c214n

4b4; g2 ¼ m4 þ 2c22m
2n2b2 þ c224n

4b4;

g3 ¼ c30m
4 þ c32m

2n2b2 þ c34n
4b4; g13 ¼ m4 þ 18c22m

2n2b2 þ 81c224n
4b4;

C3 ¼ 1� g3
m2

e; b ¼ c14c24
1þ c14c24c

2
30


 �1=2

; c ¼ � c14c24c30
1þ c14c24c

2
30

; a ¼ b� c
2

� �1=2
; / ¼ bþ c

2

� �1=2
;

g8 ¼ c224 � a2c5 �
4

p
a
b

c5ðc5 � a2Þe1=2;

gT ¼ ðc224cT1 � c5cT2Þ þ
4

p
a
b

c5ðcT2 � c5cT1Þe1=2;

gP ¼ ðc224cP1 � c5cP2Þ þ
4

p
a
b

c5ðcP2 � c5cP1Þe1=2:

ðA:3Þ
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